
Algorithmic and advanced
Programming in Python

Remy Belmonte remy.belmonte@dauphine.eu
Lab 8

UsingXGBoost inPython
XGBoost is one of the most popular machine
learning algorithm these days. Regardless of the
type of prediction task at hand; regression or
classification.

2

XGBoost is well known to provide better solutions than other

machine learning algorithms. In fact, since its inception, it has

become the "state-of-the-art” machine learning algorithm to

deal with structured data.

Why XGBoost?

3

In this tutorial, you’ll learn to build machine learning models using
XGBoost in python. More specifically you will learn:

• what Boosting is and how XGBoost operates.
• how to apply XGBoost on a dataset and validate the results.
• about various hyper-parameters that can be tuned in

XGBoost to improve model's performance.
• how to visualize the Boosted Trees and Feature Importance

But what makes XGBoost so popular?

4

• Core algorithm is parallelizable : Because the core

XGBoost algorithm is parallelizable it can harness the

power of multi- core computers. It is also parallelizable

onto GPU’s and across networks of computers making it

feasible to train on very large datasets as well.

• Consistently outperforms other algorithm methods :

It has shown better performance on a variety of machine

learning benchmark datasets.

5

Wide variety of tuning parameters :
XGBoost internally has parameters for cross-validation,
regularization, user-defined objective functions, missing values,
tree parameters, scikit- learn compatible API etc.

XGBoost (Extreme Gradient Boosting) belongs to a family of
boosting algorithms and uses the gradient boosting (GBM)
framework at its core. It is an optimized distributed gradient
boosting library. But wait, what is boosting? Well, keep on
reading.

6

Boosting is a sequential technique which works on the principle of

an ensemble. It combines a set of weak learners and delivers

improved prediction accuracy. At any instant t, the model outcomes

are weighed based on the outcomes of previous instant t-1. The

outcomes predicted correctly are given a lower weight and the ones

miss-classified are weighted higher.

7

Boosting

Let's understand boosting in general with a simple illustration.

8

Example

Four classifiers (in 4 boxes), shown above, are trying to
classify + and - classes as homogeneously as possible.

https://www.datacamp.com/

1. Box 1: The first classifier (usually a

decision stump) creates a vertical line (split)

at D1. It says anything to the left of D1 is +

and anything to the right of D1 is -. However,

this classifier misclassifies three + points.

Note a Decision Stump is a Decision Tree

model that only splits off at one level,

therefore the final prediction is based on only

one feature.
9

2. Box 2: The second classifier gives more weight

to the three + misclassified points (see the bigger

size of +) and creates a vertical line at D2. Again it

says, anything to the right of D2 is - and left is +.

Still, it makes mistakes by incorrectly classifying

three - points.

10

3. Box 3: Again, the third classifier gives

more weight to the three - misclassified

points and creates a horizontal line at D3.

Still, this classifier fails to classify the

points (in the circles) correctly.

11

4. Box 4: This is a weighted

combination of the weak classifiers

(Box 1,2 and 3). As you can see, it

does a good job at classifying all the

points correctly.

12

That's the basic idea behind boosting algorithms is building a weak

model, making conclusions about the various feature importance

and parameters, and then using those conclusions to build a new,

stronger model and capitalize on the misclassification error of the

previous model and try to reduce it. Now, let's come to XGBoost.

13

Now, let's come to XGBoost.

To begin with, you should know about the default base learners of

XGBoost: tree ensembles. The tree ensemble model is a set of

classification and regression trees (CART). Trees are grown one

after another, and attempts to reduce the misclassification rate are

made in subsequent iterations.

Here’s a simple example of a CART that classifies whether

someone will like computer games straight from the

XGBoost's documentation. 14

https://xgboost.readthedocs.io/en/latest/model.html

If you check the image in Tree Ensemble section, you will

notice each tree gives a different prediction score depending

on the data it sees and the scores of each individual tree are

summed up to get the final score.

15

In this tutorial, you will be using XGBoost to solve a regression

problem. The dataset is taken from the UCI Machine Learning

Repository and is also present in sklearn's datasets module. It has 14

explanatory variables describing various aspects of residential homes

in Boston, the challenge is to predict the median value of owner-

occupied homes per $1000s.

16

UsingXGBoost in Python
First of all, just like what you do with any other dataset, you are

going to import the Boston Housing dataset and store it in a

variable called boston. To import it from scikit-learn you will

need to run this snippet.

from sklearn.datasets import load_boston

boston = load_boston()

17

The boston variable itself is a dictionary, so you can check for

its keys using the .keys() method.

print(boston.keys())

> dict_keys(['data', 'target', 'feature_names', 'DESCR'])

You can easily check for its shape by using the boston.data.shape

attribute, which will return the size of the dataset.

print(boston.data.shape)

> (506, 13)
18

19

As you can see it returned (506, 13), that means there

are 506 rows of data with 13 columns. Now, if you want

to know what the 13 columns are, you can simply use

the .feature_names attribute and it will return the

feature names.

print(boston.feature_names)

> ['CRIM' 'ZN' 'INDUS' 'CHAS' 'NOX' 'RM' 'AGE' 'DIS' 'RAD' 'TAX'

'PTRATIO' 'B' 'LSTAT’]

The description of the dataset is available in the dataset

itself. You can take a look at it using .DESCR .

print(boston.DESCR)

20

21

Now let’s convert it into a pandas DataFrame! For that you need

to import the pandas library and call the DataFrame()

function passing the argument boston.data. To label the

names of the columns, use the .columnns attribute of the

pandas DataFrame and assign it to boston.feature_names

22

import pandas as pd

data = pd.DataFrame(boston.data)

data.columns = boston.feature_names

Explore the top 5 rows of the dataset by using head() method

on your pandas DataFrame.

data.head()

23

You'll notice that there is no column called PRICE in the

DataFrame. This is because the target column is available in

another attribute called boston.target . Append

boston.target to your pandas DataFrame.

data['PRICE'] = boston.target
24

Run the .info() method on your DataFrame to get useful

information about the data.

data.info()

<class 'pandas.core.frame.DataFrame'>

RangeIndex: 506 entries, 0 to 505

Data columns (total 14 columns):

CRIM 506 non-null float64

ZN 506 non-null float64

INDUS 506 non-null float64

CHAS 506 non-null float64

NOX 506 non-null float64
25

RM 506 non-null float64

AGE 506 non-null float64

DIS 506 non-null float64

RAD 506 non-null float64

TAX 506 non-null float64

PTRATIO 506 non-null float64

B 506 non-null float64

LSTAT 506 non-null float64

PRICE 506 non-null float64

dtypes: float64(14)

memory usage: 55.4 KB
26

Turns out that this dataset has 14 columns (including the target

variable PRICE) and 506 rows. Notice that the columns are of

float data-type indicating the presence of only continuous

features with no missing values in any of the columns. To get more

summary statistics of the different features in the dataset you will

use the describe() method on your DataFrame.

Note that describe() only gives summary statistics of columns

which are continuous in nature and not categorical.

data.describe()

27

If you plan to use XGBoost on a dataset which has categorical features

you may want to consider applying some encoding (like one-hot

encoding) to such features before training the model. Also, if you have

some missing values such as NA in the dataset you may or may not do a

separate treatment for them, because XGBoost is capable of handling

missing values internally. You can check out this link if you wish to

know more on this. 28

https://github.com/dmlc/xgboost/issues/21

Without delving into more exploratory analysis and feature
engineering, you will now focus on applying the algorithm to train the
model on this data.
You will build the model using Trees as base learners (which are the

default base learners) using XGBoost's scikit-learn compatible API.

Along the way, you will also learn some of the common tuning

parameters which XGBoost provides in order to improve the model's

performance, and using the root mean squared error (RMSE)

performance metric to check the performance of the trained model

on the test set. Root mean Squared error is the square root of the

mean of the squared
29

differences between the actual and the predicted values. As

usual, you start by importing the library xgboost and other
important libraries that you will be using for building the

model.

Note you can install python libraries like xgboost on your

system using pip install xgboost on cmd.

import xgboost as xgb

from sklearn.metrics import mean_squared_error

import pandas as pd

import numpy as np 30

Separate the target variable and rest of the variables using

.iloc to subset the data.

X, y = data.iloc[:,:-1],data.iloc[:,-1]

Now you will convert the dataset into an optimized data

structure called Dmatrix that XGBoost supports and gives it

acclaimed performance and efficiency gains. You will use this

later in the tutorial.

data_dmatrix = xgb.DMatrix(data=X,label=y)
31

XGBoost's hyperparameters
At this point, before building the model, you should be aware of

the tuning parameters that XGBoost provides. Well, there are a

plethora of tuning parameters for tree-based learners in

XGBoost and you can read all about them here. But the most

common ones that you should know are:

• learning_rate : step size shrinkage used to

prevent overfitting. Range is [0,1]

• max_depth : determines how deeply each tree is

allowed to grow during any boosting round.
32

http://xgboost.readthedocs.io/en/latest/parameter.html#general-parameters

• subsample : percentage of samples used per tree. Low
value can lead to underfitting.

colsample_bytree : percentage of features used per tree.

High value can lead to overfitting.

n_estimators : number of trees you want to build.

objective : determines the loss function to be used like

reg:linear for regression problems, reg:logistic for
classification problems with only decision,

for classification problems with probability.
binary:logistic

33

XGBoost also supports regularization parameters to penalize

models as they become more complex and reduce them to

simple (parsimonious) models.

gamma : controls whether a given node will split based on the

expected reduction in loss after the split. A higher value leads to

fewer splits. Supported only for tree-based learners.

alpha : L1 regularization on leaf weights. A large value leads to

more regularization.

lambda : L2 regularization on leaf weights and is smoother than

L1 regularization. 34

It's also worth mentioning that though you are using trees as

your base learners, you can also use XGBoost's relatively less

popular linear base learners and one other tree learner known
as dart. All you have to do is set the

either gbtree (default), gblinear or
booster parameter to

dart .

Now, you will create the train and test set for cross-validation

of the results using the train_test_split function from

sklearn's model_selection module with test_size size equal

to 20% of the data. Also, to maintain reproducibility of the

results, a random_state is also assigned. 35

The next step is to instantiate an XGBoost regressor object by

calling the XGBRegressor() class from the XGBoost library with

the hyper-parameters passed as arguments. For classification

problems, you would have used the XGBClassifier() class.

xg_reg = xgb.XGBRegressor(objective ='reg:linear', colsample_by

max_depth = 5, alpha = 10, n_estimators = 10)

from sklearn.model_selection import train_test_split

X_train, X_test, y_train, y_test = train_test_split(X, y, test_

36

https://www.datacamp.com/

Fit the regressor to the training set and make predictions on

the test set using the familiar .fit() and .predict()

methods.

xg_reg.fit(X_train,y_train)

preds = xg_reg.predict(X_test)

Compute the rmse by invoking the mean_sqaured_error

function from sklearn's metrics module.
37

rmse = np.sqrt(mean_squared_error(y_test, preds))

print("RMSE: %f" % (rmse))

RMSE: 10.569356

Well, you can see that your RMSE for the price prediction came

out to be around 10.8 per 1000$.

k-fold CrossValidation usingXGBoost
38

rmse = np.sqrt(mean_squared_error(y_test, preds))

print("RMSE: %f" % (rmse))

RMSE: 10.569356

Well, you can see that your RMSE for the price prediction came

out to be around 10.8 per 1000$.

39

In order to build more robust models, it is common to do a k-

fold cross validation where all the entries in the original

training dataset are used for both training as well as validation.

Also, each entry is used for validation just once. XGBoost

supports k-fold cross validation via the cv() method. All you

have to do is specify the nfolds parameter, which is the

number of cross validation sets you want to build.

40

k-fold CrossValidation usingXGBoost

Also, it supports many other parameters (check out this link)

like:

• num_boost_round : denotes the number of trees you

build (analogous to n_estimators)

• metrics : tells the evaluation metrics to be watched

during CV

• as_pandas : to return the results in a pandas

DataFrame.

41

k-fold CrossValidation usingXGBoost

http://xgboost.readthedocs.io/en/latest/python/python_api.html

• early_stopping_rounds : finishes training of the model

early if the hold-out metric ("rmse" in our case) does not

improve for a given number of rounds.

• seed : for reproducibility of results.

This time you will create a hyper-parameter dictionary params

which holds all the hyper-parameters and their values as key-

value pairs but will exclude the n_estimators from the hyper-
42

parameter dictionary because you will use num_boost_rounds

instead.

You will use these parameters to build a 3-fold cross validation

model by invoking XGBoost's cv() method and store the

results in a cv_results DataFrame. Note that here you are

using the Dmatrix object you created before.
params = {"objective":"reg:linear",'colsample_bytree': 0.3,'lea

'max_depth': 5, 'alpha': 10}

cv_results = xgb.cv(dtrain=data_dmatrix, params=params, nfold=3

num_boost_round=50,early_stopping_rounds=10
43

cv_results contains train and test RMSE metrics for each

boosting round.

cv_results.head()

44

Extract and print the final boosting round metric.

print((cv_results["test-rmse-mean"]).tail(1))

46

49 4.031162

Name: test-rmse-mean, dtype: float64

You can see that your RMSE for the price prediction has reduced as

compared to last time and came out to be around

4.03 per 1000$. You can reach an even lower RMSE for a different

set of hyper-parameters. You may consider applying techniques

like Grid Search, Random Search and Bayesian Optimization to

reach the optimal set of hyper-parameters.
47

Visualize Boosting Trees and Feature
Importance
You can also visualize individual trees from the fully boosted model

that XGBoost creates using the entire housing dataset. XGBoost

has a plot_tree() function that makes this type of visualization

easy. Once you train a model using the XGBoost learning API, you

can pass it to the plot_tree() function along with the number of

trees you want to plot using the num_trees argument.

xg_reg = xgb.train(params=params,

dtrain=data_dmatrix, num_boost_round=10)
48

Plotting the first tree with the matplotlib library:

import matplotlib.pyplot as plt

xgb.plot_tree(xg_reg,num_trees=0)

plt.rcParams['figure.figsize'] = [50, 10]

plt.show()

49

50

These plots provide insight into how the model arrived at its

final decisions and what splits it made to arrive at those

decisions.

51

Note that if the above plot throws the 'graphviz' error on your

system, consider installing the graphviz package via

pip install graphviz on cmd. You may also need to run

sudo apt-get install graphviz on cmd. (link)

Another way to visualize your XGBoost models is to examine

the importance of each feature column in the original dataset

within the model.

52

https://stackoverflow.com/questions/35064304/runtimeerror-make-sure-the-graphviz-executables-are-on-your-systems-path-aft

53

One simple way of doing this involves counting the number of
times each feature is split on across all boosting rounds (trees)
in the model, and then visualizing the result as a bar graph, with
the features ordered according to how many times they appear.
XGBoost has a plot_importance() function that allows

you to do exactly this.

xgb.plot_importance(xg_reg)

plt.rcParams['figure.figsize'] = [5, 5]

plt.show()

54

55

As you can see the feature RM has been given the highest

importance score among all the features. Thus XGBoost also

gives you a way to do Feature Selection. Isn't this brilliant?

Conclusion

In this lag you have learned how to use XGBoost

You started off with understanding how Boosting works in general

and then narrowed down to XGBoost specifically. You also practiced

applying XGBoost on an open source dataset and along the way you

learned about its hyper-parameters, doing cross-validation,

visualizing the trees and in the end how it can also be used as a

Feature Selection technique

56

57

In Lab session

You will see how to use XGBoost to do price prediction for houses in
Boston
This can be useful for your FINAL project

Lab is done by Remy Belmonte

58

	Slide Number 1
	Slide Number 2
	XGBoost is well known to provide better solutions than other machine learning algorithms. In fact, since its inception, it has become the "state-of-the-art” machine learning algorithm to deal with structured data.
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Using XGBoost in Python
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 22
	import pandas as pd
	Slide Number 24
	Slide Number 25
	Slide Number 26
	float data-type indicating the presence of only continuous features with no missing values in any of the columns. To get more summary statistics of the different features in the dataset you will use the describe() method on your DataFrame.
	Slide Number 28
	Slide Number 29
	important libraries that you will be using for building the model.
	X, y = data.iloc[:,:-1],data.iloc[:,-1]
	Slide Number 32
	colsample_bytree : percentage of features used per tree. High value can lead to overfitting.
	Slide Number 34
	Slide Number 35
	X_train, X_test, y_train, y_test = train_test_split(X, y, test_
	the test set using the familiar	.fit() and	.predict()
	Slide Number 38
	Slide Number 39
	Slide Number 40
	Slide Number 41
	Slide Number 42
	You will use these parameters to build a 3-fold cross validation model by invoking XGBoost's	cv() method and store the results in a	cv_results DataFrame. Note that here you are using the Dmatrix object you created before.
	cv_results contains train and test RMSE metrics for each boosting round.
	Slide Number 45
	Slide Number 46
	You can see that your RMSE for the price prediction has reduced as compared to last time and came out to be around
	You can also visualize individual trees from the fully boosted model that XGBoost creates using the entire housing dataset. XGBoost has a plot_tree() function that makes this type of visualization easy. Once you train a model using the XGBoost learning API, you can pass it to the plot_tree() function along with the number of trees you want to plot using the num_trees argument.�xg_reg = xgb.train(params=params, dtrain=data_dmatrix, num_boost_round=10)
	Slide Number 49
	Slide Number 50
	Slide Number 51
	Slide Number 52
	Slide Number 53
	Slide Number 54
	Slide Number 55
	In this lag you have learned how to use XGBoost�You started off with understanding how Boosting works in general and then narrowed down to XGBoost specifically. You also practiced applying XGBoost on an open source dataset and along the way you learned about its hyper-parameters, doing cross-validation, visualizing the trees and in the end how it can also be used as a Feature Selection technique
	Slide Number 57
	In Lab session	

